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  ABSTRACT  
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INTRODUCTION 

 

Qi (2002) obtained the following new integral inequality: 

Suppose 1n  be an integer and suppose that f  has a continuous derivative of the n-th order on [a,b], 0)(  af  

and !)( nf n   where 10  ni . Then 
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He then proposed the following problem: 

Under what conditions does the inequality  
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hold for 1>t ? 

Towghi (2001) found sufficient condition for (2) to hold. To recall the result of Towghi, we need some 

notations. Let ff =(0)
, dssff

x

a
 )(=1)(




, and ][x  denote the greatest integer less than or equal to x . For 

1],(  nnt , where n is a positive integer, let 1))(2)...(1)((=)(  nttttt . For 1<t , let 1=)(t  and 

1>t , ],[ bax , and 0)()( af i
 for 2][0  ti . If 

][2])([ )1)(()( ttt axtxf   , then 

dxxfab
b

a

t  )()( 1

 
, and (2) holds. 

Since 1n  is an integer and suppose that f  satisfies the conditions of the above problem. Then, from 

!)()( nxf n   and 0)()( af i
 for 10  mi , it follows that 0)()( tf i

 and are non-decreasing for 

10  ni . In particular, f  is nonnegative when 2t , the assumption above also imply that f  is nonnegative. 

The proof of (2) in this case is made by the use of the integral version of Jensen’s inequality. 

By using a lemma of convexity and Jensen’s inequality, Yu and Feng (2001) established the following result: 

Suppose that f  is a continuous function on ],[ ba  satisfying the following condition: 
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Then, we have  
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Pogany (2002) found sufficient conditions for more general inequality  
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to hold without assuming the differentiability on the function f  and without using convexity criteria. Pogany 

established some inequalities which are generalization, reversed form, or weighted version of (2). Mazouzi and Feng 

(2003) established a functional inequality from which the inequality (2) and other integral or discrete inequalities can 

be deduced. 

 

In response to the open problem (2), an affirmative answers, extensions, reversed forms, and interpretations of 

inequality (2) can be found in Csiszar and Mori (2003) and the references therein. 

 

Qi and Yu (2001) first gave an affirmative answer to this open problem using the integral version of Jensen’s inequality 

and a lemma of convexity. The second affirmative answer to (2) was given by Towghi (2001). Pogany (2002) was 

motivated by (2) and proved the following: 
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and it’s reversed form under assumptions of the bounds, depending on ab  ,   and  , and convexity of the 

function f , which contains an answer to the above open problem and some reversed forms of (2). 

 

Mazouzi and Qi (2003) employed a functional inequality which is an abstract generalization of the classical Jensen’s 

inequality and functional inequality (8) was established, from which inequality (2), some integral inequalities and an 

interesting discrete inequality involving sums can be deduced. 

 

Let   be a linear vector space of real-valued functions, p  and q  be two real numbers such that 1 qp . Assume 

that f  and g  are two positive functions in   and G  is a positive linear form on   such that 0>)(gG , fg , 

and pgf . If 
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Very recently, Csiszar and Mori (2003) interpreted inequality (6) in terms of moments as: 

 

 (9)                             )()(  EXCXE   

where 
1)(=  abC  and fX =  is a random variable. To demonstrate the power of the convexity in probability 

theory, among other things, they found sharp conditions on the range of X , under which (9) or the converse inequality 
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holds for fixed  <<0 . Hence, the results by Pogany (2002) were improved slightly by a factor of at least 
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Similar to results in (2), Feng propose the following problem: 

Problem 2 : Under what conditions does the inequality: 
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In this paper, by utilizing the reversed Holder’s inequality in Liu (1990) and a reversed convolution inequality in Sai 

Toh, Tun and Yamamoto (2003), we establish some new Qi type integral inequalities which extend and generalized 

some earlier results in literature. 

 

MATERIAL AND METHOD: INTEGRAL INEQUALITY SIMILAR TO QI’S      INEQUALITY 

 

We first state the QI’s inequality and also discuss some propositions on it. 

 

Problem 1 : 

 Under what conditions does the inequality  
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 hold for 1>t ? 

Similar to problem 1, we propose the following : 

Problem 2 [Feng (2002)]: 

 Under what conditions does the inequality:  
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Before giving an affirmative answer to problem 2, the following propositions are established: 

Proposition 1 : 

Let f  and g  be non-negative functions with  <
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The following gives an affirmative answer to problem 2 as follows: 
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Proposition 2: 

For a given positive integer 2p , if Mxfm  )(<0  on ],[ ba  with 
pp abmM )/(

21)(  
, then  
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Remark: 

Now we discuss a simple case of “equality" in proposition 2. If we make the substitution mMxf ==)(  

and 1=ab   with 2=p , then the following in (14) holds, that is 
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In order to illustrate a possible practical use of proposition 2, we shall give in the following  simple example is a direct 

application of inequality (14). 

 

1.   Example 
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proposition 2 are fulfilled and straight forward computation yields: 
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Also, from the right hand side, it implies 
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GENERALIZATION OF QI’S INTEGRAL INEQUALITY 

 

The objective of this section is to obtain the n-dimensional functions of the QI’s integral inequality. 
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Using Holder’s Inequality on the left hand side of (22) implying 
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For a given positive integer p , setting 1)(
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 Hence, the inequality (20) is proved. 

  

Remarks : 

(1) For a given positive integer p , setting 1)(
1=

 xgi

n

i
 and 1)(

1=
 xyi

n

i
 in (22) gives  
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(2) The result is valid for n2 -terms for all Nn . 

(3) Since the given bounds cannot corrollate with odd functions, then the results are not    valid for odd terms. 

 

Applications 

 

Some examples were considered as application for the generalization of QI’s integral inequalities as: 

For a given positive integer p , setting 1)(
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 xgi
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i
 in (19) gives 
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Problem 1. Let 1f  and 2f  be nonnegative functions with  <
)(

)(
<0

2

1 M
xf

xf
m  on ],[ ba , for 1>p

. Suppose 
'

12 = ff , 3=p  and it is integrable over ],[ ba , then the inequality holds:  
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Problem 2. Let 1f  and 2f  be nonnegative functions with  <
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Problem 4. Suppose 1f , 2f , 3f  and 4f  are nonnegative functions with  <
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CONCLUSION 

 

This paper has investigated, extended and generalized 

some results on QI type integral inequality involving 

non-negative and continuous functions. Some 

applications were also considered. However, there 

may be need to extend this work in the future, by 

considering trigonometric functions with the aim of 

obtaining sharp bound, since trigonometric functions 

are not strictly non-negative (not strictly positive) and 

it is believed that useful results can be derived from 

the idea. 
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