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ABSTRACT 

Epidemiological data on infection outbreaks are challenging to analyze, despite 

improved control interventions Ebola virus Disease (EVD) remains a serious risk in 

Guinea (West Africa) with 607 reported cases and 406 deaths recorded (66.8%) as of 

20th August, 2014.In this study we use modified epidemiological modeling SEIR to 

analyze data from an Ebola outbreak in Guinea from 22nd march – 20th August,2014 

We use Bayesian inference with non – linear transmission times incorporated into 

augmented dataset as latent variables. Despite the lack of detailed data, most data 

sets record the time on symptom onset but transmission time is not observable. We 

inferred from such dataset records using structured Hidden Markov Models HMMS. 

Infectivity is determined before and after public health interventions for hospitalized 

cases. We estimate the number of secondary cases generated by an index case in the 

absence of control interventions (Ro). Our estimate of Ro is 1.57 (CI95 0.82-1.92) and 

the mean value of estimated detection rate is 0.75 (CI95 0.59 -0.93) with a coefficient 

of correlation between 𝛽 and v as – 0.23. We perform sensitivity analysis of the final 

epidemic size tothe time of intervention, which ensures the uniqueness and the global 

stability of the positive endemic equilibrium state. 
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        INTRODUCTION   

On 26 August, WHO reported that more than 

240 health workers have developed Ebola in 

Guinea, Liberia, Nigeria and Sierra Leone, and 

more than 120 have died. Caring for the 

infected is greatly scary. WHO endorsed the 

use of interventions with as – yet – unknown 

effects for treatment and for prevention of 

Ebola? Health care providers caring for Ebola 

patients, family and friends in close contact 

with Ebola patients are at the highest risk of 
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getting infected because they may come on 

direct contact with the blood or body fluids of 

sick patients. Nosocomial cases are rampant in 

Guinea owning to the explanation lack of the 

number of medical staff needed to manage 

such a large outbreak, shortages of protective 

equipment, or improperly using what is 

available [42].Also, without recent past 

experience with the disease, people have 

become intensely fearfully and have in some 

cases, attacked medical staff, believing that 

they cause the disease [42].In late August, 

medicine Sans Frontiers (MSF) called the 

situation “Chaotic” and medical response “ 

inadequate” calling the situation “ an 

emergency within emergency” MSF reports 

that many hospitals have had to shut down due 

to lack of  staff or fear of the virus among 

patients and staff “ The poor living conditions 

and lack of water and sanitation in most 

districts of Conakry pose a serious risk that the 

epidemic escalate into a crisis. People do not 

think to wash their hands when they do not 

have enough water to drink” [18].  

Forecasts of economic growth have been 

reduced [33]. An initial world Bank-IMF 

assessment of Guinea projects a full 

percentage point drop in GDP from 4.5 percent 

to 3.5 percent [22]. Foreign mining companies 

have withdrawn non-essential personnel, 

deferred new investment and cut back 

operating [25][8][41].Guinea closed its border 

with both Liberia and Sierra Leone to help 

contain the spread of the disease, as more cases 

were being reported in those countries than in 

Guinea [30]. The virus re-surfaces in 

September the new cases were related to 

persons returning to Guinea from neighboring 

Liberia or sierra Leone [21]. According to Dr 

Peter Piot, the scientist who co– discovered the 

Ebola virus, Ebola is not following its usual 

linear patterns as mapped out in previous 

outbreaks. This time the virus is “hopping” all 

over the West African Epidemic region. 

 

Mathematical models can be useful in the area of 

hospital control for two reasons. Firstly, they can 

be used to predict quantitatively the course of an 

epidemic, predicting its total size; and time to peak 

and the impact of infection control interventions 

including non-linear interactions that occur when 

multiple interventions are undertaken. Secondly; 

they can inform the design of trial and structure 

statistical analysis to avoid assumptions of serial 

independence and difficulties with interval 

censoring and unknown number of infectious cases. 

In recent years, a number of authors studied 

epidemiological models with non-linear incidence 

rates. The most common non-linear incidence rate 

takes the form 𝛽𝐼p𝑆q (where P and Q are positive 

constants). Models with incidence rate have been 

studied by[40] and later by [32],[17],[36], and 

many others. [40]Proposedmore sophisticated 

forms of the non – linear incidence rate(KIpS)(I + 𝛼 

Iι)     

[11] Who studied infection of insects considered a 

non – linear pathogens transmission of the form 

𝑆𝑙𝑛 (𝐼 + 𝑉
𝑃

𝐾
 ) (Where P is the density of the 

pathogen particles). [37] Studied the global 

properties of a SEIR model with the incidence rate 

of the form 𝑔(𝐼)𝑆; they also extended some of their 

results for a SEIRS model. [35] Considered a 

variety of models with the incidence rate of the 

form 𝑔(𝐼)ℎ(𝑆);the most general case was 

considered by [24] who considered properties of a 

model with arbitrarily many stages of infection. 

They found the condition for existence of a unique 

endemic equilibrium state for its local stability. Our 

objective is to formulate and analyze a model for 

Ebola virus (EBOV) that includes relevant 

Biological strategy not considered before in Ebola 

models. The overall objectives of this study are to 

develop statistical models in order to improve the 

understanding of the transmission of infection 

agents in the hospital and to use these models to 

inform infection control practitioners in public 

health as to the existence of endemic equilibrium 

under some conditions and analyze the stability of 

disease – free equilibrium 

As of 20th October 2014 [12] has it that 

nosocomial transmission has been typical as 

patients are often treated by unprepared 

hospital personal (barrier nursing techniques 

need to be observed) individuals exposed to 

the virus who become infectious do so after a 

mean incubation of 6.3 days (1-21days) [6] 

Ebola is characterized by initial flu –like 

symptoms which rapidly progress to vomiting, 

diarrhea, rash, and internal and external 

bleeding. Infected individuals received limited 

careand no specific treatment or vaccine exists. 

Most infected persons die within 10days of 

their initial infection [5] (50%-90%) mortality 

(WHO, 2003).  
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Using modified SEIR (susceptible exposed – 

infectious – removed) epidemic model in 

(fig2) and data from well – documented Ebola 

outbreak[31]. We use Bayesian inference with 

non-linear transmission times incorporated into 

augmented dataset as latent variables and 

inferring the data set into structured Hidden 

Marker Models HMMs. We estimate the 

number of secondary cases generated by an 

under case in the absence of control 

interventions (Ro). Our estimate is 1.57(CI95 

0.82-1.92) and the mean value for estimated 

detection rate is 0.75 (CI95 0.59-0.93) with a 

coefficient correlation between 𝛽 and V as – 

0.23. We perform sensitivity analysis of the 

final epidemic size to the time to intervention, 

which ensures the uniqueness and the global 

stability of the positive endemic equilibrium 

state.   

       METHODS 

We fit data from Ebola virus disease out 

breaks in Guinea (2014) to a simple 

deterministic (Continuous time) SEIR 

epidemic model Fig 1. The fit of the model 

provides estimate for parameters. The fitted 

model can then be used to estimate the basic 

reproductive number Ro and quantify the 

impact of intervention measures on the 

transmission rate of the disease. Interpreting 

the fitted model as an expected value of a 

structured Hidden Marker Model HMM, 

process, we use multiple stochastic realization 

of the epidemic to estimate a distribution of the 

final epidemic size to the timing of 

intervention. We used the Bayesian framework 

to estimate posterior probability of the 

transmission parameter. We perform 

sensitivity analysis on Ro to account for high 

variability in disease   related parameter in our 

model to ensure the uniqueness and the global 

stability of the positive endemic equilibrium 

 state.

         FIG: 1 2014 EBOLA OUTBREAK IN WEST AFRICA-OUTBREAK DISTRIBUTION MAP 

 

 

 

 

Affected areas 

in   Guinea 

Conakry, Coyah, Forecariah, Gueckedou, Kouroussa, Macenta, Siguiri, Pita, 

Nzerekore,Dubreka,Yomou,Kerouane,Kindia,Dalaba,Lola,Beyla 

No longer active due to intervention control: Boffa, Dabola, Dinguiraya, Kissidougou, 

Telimele, Boke 

On 28 August, the WHO released its first estimate 

of the possible total cases (20,000) from the 

outbreak as part of its roadmap for stopping the 

transmission of the virus.[3] The WHO roadmap 

states "[t]his Roadmap assumes that in many areas 

of intense transmission the actual number of cases 

may be two- to fourfold higher than that currently 

reported. It acknowledges that the aggregate case 
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load of EVD could exceed 20,000 over the course 

of this emergency. The Roadmap assumes that a 

rapid escalation of the complementary strategies in 

intense transmission, resource-constrained areas 

will allow the comprehensive application of more 

standard containment strategies within 3 

months."[3] It has been reported that some people 

in this area believe that health workers have been 

purposely spreading the disease to the people, 

while others believe that the disease does not exist. 

Riots recently broke out in the regional capital, 

Nzérékoré, when rumors were spread that people 

were being contaminated when health workers 

were spraying a market area to decontaminate 

it.[31]  

On 18 September, it was reported that the bodies of 

a team of Guinean health and government officials, 

accompanied by journalists, who had been 

distributing Ebola information and doing 

disinfection work, were found in a latrine in the 

town of Womey near Nzérékoré.[4] The workers 

had been murdered by residents of the village after 

they initially went missing after a riot against the 

presence of the health education team. Government 

officials said "the bodies showed signs of being 

attacked with machetes and clubs" and "three of 

them had their throats slit."[26]  

WHO estimated on 21 September that Guinea's 

capacity to treat EVD cases falls short by the 

equivalent of 40 beds.[39] On 13 October, France 

indicated it would build more treatment centers[26] 

On 18 October, Egypt sent three tons of medical 

aid, consisting of medicine and medical 

equipment.[23]  

 

       

       𝛽𝐼 ∝    𝛾C 

 

Fig 2: A schematic representation of the flow of individual between epidemiology classes 𝛽𝐼 is the transmission 

rate to susceptible S from I, E I the class of infected (not yet infectious) individuals; K is the rate at which E – 

individuals move to the symptomatic and infectious class I: infectious individuals (I) either die or recover at rate 

𝛾. C is not an epidemiological state but keeps track of the cumulative number of cases after the time of onset of 

symptoms. 

 

 

TABLE: 1 showing major Ebola virus outbreaks by country and by date – 25 August 

R I E S 

http://en.wikipedia.org/wiki/Womey
http://en.wikipedia.org/wiki/Nz%C3%A9r%C3%A9kor%C3%A9
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To most recent WHO/Gov update .Note: These reflect official confirmations only. The actual numbers are 

estimated to be three times as high. 

 

Date 

Total Guinea Liberia Sierra Leone 

Cases Deaths Cases Deaths Cases Deaths Cases Deaths 

24 Oct 2014 12,008 5,078 1,598 981 6,253 ≥2,704 4,017 1,341 

19 Oct 2014 9,936 4,877 1,540 926 ≥4,665 ≥2,705 3,706 1,259 

17 Oct 2014 9,693 4,811 1,501 886 ≥4,607 ≥2,689 3,560 1,227 

12 Oct 2014 8,997 4,493 1,472 843 ≥4,249 ≥2,458 3,252 1,183 

7 Oct 2014 8,386 3,988 1,350 778 ≥4,076 ≥2,316 2,937 885 

5 Oct 2014 8,033 3,865 1,298 768 ≥3,924 ≥2,210 2,789 ≥879 

1 Oct 2014 7,492 3,439 1,199 739 ≥3,834 ≥2,069 2,437 623 

28 Sep 2014 7,192 3,286 1,157 710 ≥3,696 ≥1,998 2,317 570 

25 Sep 2014 6,808 3,159 1,103 668 ≥3,564 ≥1,922 2,120 561 

23 Sep 2014 6,574 3,043 1,074 648 ≥3,458 ≥1,830 2,021 557 

21 Sep 2014 6,263 2,900 1,022 635 ≥3,280 ≥1,707 1,940 550 

17 Sep 2014 5,762 2,746 965 623 ≥3,022 ≥1,578 1,753 537 

14 Sep 2014 5,339 2,586 942 601 ≥2,720 ≥1,461 1,655 516 

10 Sep 2014 4,848 2,376 899 568 2,415 1,307 1,509 493 

7 Sep 2014 4,391 2,177 861 557 2,081 1,137 1,424 476 

3 Sep 2014 4,001 2,059 823 522 1,863 1,078 1,292 452 

31 Aug 2014 3,707 1,808 771 494 1,698 871 1,216 436 

25 Aug 2014 3,071 1,553 648 430 1,378 694 1,026 422 

EPEDEMIC MODEL  

Our model accommodates the diverse and complex 

dynamics of an Ebola virus (EBOV) outbreak in 

West Africa 2014 determined by population – 

specific parameters such as the effective contact 

rate 𝛽. The general epidemic model assumes that 

people begin susceptible to an infective disease, 

may become infected by exposure to an infected 

person becoming immediately infectious 

themselves and after a time period either recover or 

die. Recovery constitutes immunity to further 

infection and they are said to be removed. The 
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simplest version of this SEIR model assumes 

homogenous mixing and a fixed population size  

𝑁 = 𝑆(𝑡) + 𝐸(𝑡) +  𝐼 (𝑡) +

𝑅 (𝑡) 𝑊ℎ𝑒𝑟𝑒𝑆(𝑡) 𝐸(𝑡), 𝐼(𝑡), 𝑎𝑛𝑑 𝑅(𝑡) Are the 

numbers in the population who are susceptible, 

infectious and removed at time t [7]. The 

homogenous mixing is invalid, in this case the 

necessary population structure and heterogeneous 

mixing may be incorporated into a model with a 

specific form of non – linear transmission and the 

non –linear incidence rate 𝛽𝑆𝐼 and arises from 

saturation effects[13]. If the proportion of the 

infective host in a population is very high, so 

exposure to the disease agents is virtually setting, 

the transmission rate may respond more slowly 

than linear to increase in the number of effectives. 

Each contact between the susceptible and the 

exposed – those individuals have acquired 

infections but not yet infectious can be simulated 

numerically. A simple system of questions from 

classical system of ordinary differential equations 

(ODES) can be used to describe the model.    

𝑑𝑠

𝑑𝑡
=  −𝛽𝑆𝐼 

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  𝛼𝐸   

 

𝑑𝐼

𝑑𝑡
=  𝛼𝐸 −  𝛾𝐼 

 

𝑑𝑅  

𝑑𝑡
 =  𝛾𝐼 

 

Where  𝛼 , 𝛽, and 𝛾 are positive constant. Linearising the system about a steady state (S, E, I) taking S = S + s E 

= E + e and I = I + i leads to    

 

𝑆
𝑒
𝑖
    =   

−𝛽𝐼 𝑂 −𝛽𝑆
𝛽𝐼 −𝛼 𝛽𝑆
𝑂 𝛼 −𝛾

𝑆
𝑒
𝑖
 

 

 

TABLE: 2showing effects and transmission rate according to the model 

 

The dominant eigenvalue of the Jacobian at the steady state (S = N, E = 0, I = 0) gives the growth rate of the 

epidemic curves. 

 

𝜆 = (−𝛾 +  𝛼) +     (𝛼 − 𝛾)2 + 4 𝛽𝑁𝛼[5]  

  2 

Note: The growth of the epidemic is dependent on 

the rate of transmission from the latent infectious 

period𝛼. 

 

MODEL ASSUMPTIONS 

The model makes the following assumptions  

1. The ward is of fixed size, N. 

2. The model parameters are time invariant  

3. Each observation is conditionally 

independent given the corresponding 

hidden state.  

4. The hidden states follow a first order time 

homogenous Markov process, that is  

𝑃𝑟(𝐶(𝑡k)⃒C(t1),…, (C(𝑡k – 1) = Pr 

(C(𝑡k)⃒C(𝑡k-1)= 𝑃𝑟(𝐶 𝑡k - 𝑡k-1)⃒C(0). 

5. Homogenous mixing of patients takes 

place.  

Events Effect Transmission Rate 

Exposure  (S,E, I,R)                (S-I, E+I, IR) 𝛽(t) S 
𝐼

𝑁
 

Infection (S,E, I,R)                 (S,E, I,I+I,R) ∝ 𝐸 

Removal  (S,E, I,R)                (S-E, I-i,R+I) 𝛾I 
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Pr (𝑆(𝑡 + 𝑑𝑡) =  𝑖 − 𝐼, 𝐸(𝑡 + 𝑑𝑡) =  𝑗 + 𝐼 𝑆(𝑡)

=  𝑖, 𝐸(𝑡) = 𝑗) =  
𝛽𝑆(𝑡)𝐼(𝑡)𝑑𝑡,

𝑁(𝑡)
 

Where 𝛽 is a constant? In the simplest version of 

the SEIR model, transition between subsequent 

model compartments occurs at a constant rate, 

becoming infectious as they move into the I 

compartment and being neither infectious nor 

susceptible after being removed (see Figure 2). 

This leads to  

Pr (𝐸(𝑡 + 𝑑𝑡) =  𝑗 − 1, 𝐼 (𝑡 + 𝑑𝑡) =  𝑘 + 1 │ 𝐸 (𝑡)

=  𝑗 , 𝐼 (𝑡) = 𝑘) = 𝛿𝐸(𝑡)𝑑𝑡  

Pr(𝐼(𝑡 + 𝑑𝑡) = 𝑘 − 1 | 𝐼(𝑡) = 𝑘 ) =  𝛾𝐼(𝑡)𝑑𝑡,  

Where 𝛿 𝑎𝑛𝑑 𝛾 are constants? 

The assumption of a constant transition rate in the 

basic SEIR model is adopted for ease of 

calculation, leads to an exponential distribution of 

the probability density function for the time to 

transition. Other distributions, parametric or not 

parametric could be used to model sojourn times 

[19].  Assuming an exponentially distributed 

incubation period, with a mode of zero (when in 

fact the mode of the incubation period is 

considerably greater than zero) leads to under – 

estimation of infectivity inferred from the early 

epidemic growth curve 𝜆.  

 

LATENT VARIABLES  

Missing data in stochastic epidemic models can be 

imputed using latent variables. A set of latent 

variables, z, and a set of observations, y, form an 

augment dataset. Latent variables could be missing 

data, an unobservable process or an auxiliary 

variable introduced into the model for convenience. 

The probability of observations, given the 

augmented data and the model parameters, p(y/z, 

𝜃), is called the conditional probability of the 

observations. The joint probability of the 

unobserved data and the observations, the complete 

likelihood, is given by 

𝑝(𝑦, 𝑧/𝜃) =  𝑝(𝑦/𝑧, 𝜃)𝑝(𝑧/𝜃). The marginal 

distribution of y is given by.𝑝(𝑦/𝜃) =

∫ 𝑝(𝑦, 𝑧/𝜃)𝑑𝑧.   The value of introducing the latent 

variable z into the model is clear when the 

complete likelihood, 𝑝(𝑦, 𝑧/𝜃), has a much simpler 

form than the marginal likelihood, 𝑝(𝑦/𝜃), as is 

the case when there are missing data and one 

wishes to apply the piecewise constant hazard to 

determine the likelihood 

of a dataset. Latent variables can be used to extend 

the range 

of distributions that can be modeled [16] and 

simplify model computations. They have also been 

shown to enhance convergence [10].The integral 

required to evaluate the marginal distribution is 

often difficult or intractable. The following 

discussion reviews methods used to tackle latent 

variable problems.  

 

MODEL OF TRANSMISSION OF VIRUS IN 

THE HOSPITAL WARD 

We base our transmission model on the susceptible 

infected (SI) model with migration, described by 

[6]. Modified versions of this model have been 

used previously to analyze nosocomial 

transmission data. A schematic of the model is 

shown in Figure 2. The rate of cross transmission 

of EBOV colonization (per colonized per 

susceptible patient per day) is denoted by 𝛽. It is 

assumed that the ward is of fixed size, N, hence the 

number of uncolonised patients is N – C. Colonised 

patients are assumed to remain colonized for their 

entire hospital stay, therefore transmission from the 

colonized to uncolonised compartments occurs via 

discharge of a colonized patient and replacement 

with an uncolonised patient, which occurs at a 

rate 𝜇𝐶. Duration of stay of colonized patients was 

available from the dataset. Acquisition of EBOV 

that is transmitted is described by the mass – action 

term, 𝛽𝐶(𝑁 − 𝐶). EBOV acquisition that is 

sporadic can arise through ward admission of a 

colonized patient or any other process that is not 

related to the number of colonized patients, and 

occurs at a rate, 𝑣(𝑁 − 𝐶). 

 𝛽𝐶(𝑁 − 𝐶) +  𝑣 ( 𝑁 − 𝐶) 

 

 

 

                           𝜇𝐶 

 

Figure 3: The transmission of bacteria pathogens in the hospital ward. 

N

-C 

C 
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The probability of a change in the number of colonized patients, C, in short time period, h is given by 

Pr[𝐶(𝑡 + ℎ) =  𝑖 + 1 |𝐶(𝑡) =  𝑖] =  𝛽𝑖(𝑁 − 𝑖)ℎ + 𝑣 (𝑁 − 𝑖)ℎ + 𝑜(ℎ),  

Pr[𝐶(𝑡 + ℎ) =  𝑖 − 1 |𝐶(𝑡) =  𝑖] =  𝜇𝑖ℎ + 𝑜(ℎ),  

Pr[𝐶(𝑡 + ℎ) =  𝑖 |𝐶(𝑡) =  𝑖] =  1 −  𝛽𝑖(𝑁 − 𝑖)ℎ − 𝑣 (𝑁 − 𝑖)ℎ- 𝜇𝑖ℎ + 𝑜(ℎ), 

Pr[𝐶(𝑡 + ℎ) = 𝑗 (𝑗 ≠ 𝑖 − 1, 𝑖, 𝑖 + 1)|𝐶(𝑡) = 𝑖] = 𝑜(ℎ). 

 

BAYESIAN INFERENCE TO ESTIMATE Ø 

Estimate of Ebola cross – transmission were 

complicated by interval censoring of colonization 

times. Colonization events are asymptomatic so 

observations of EBOLA acquisition consisted of 

the time of first detection.  We used Bayesian 

frame work to estimate the posterior probability of 

the transmission parameter, ø. The parameter of 

transmitted 𝛽, and sporadic EBOV, v, estimated 

using a Bayesian framework. Let 𝜃p = {𝛽, 𝑣, 𝑑} be 

the vector of model parameters. [5] 

Recursionformula was used to determine the 

likelihood of the data, L(Y⃒𝜃p). Union U[0,0.1] 

prior probability distributions were assigned 

to𝛽 𝑎𝑛𝑑 𝑣, because little works known about 

these parameters other than that negative 

values or values higher than 0.1 were 

completely implausible. The posterior 

probability distribution is given by. 𝑝(𝜃p⃒Y) ∝

𝜋(𝜃p) L (Y⃒ 𝜃p),  ) 

Where  𝜋(𝜃p) is the prior probability distribution of 

𝜃p. This was estimated using a Monte – Carlo 

Markov chain algorithm. The Bayesian framework 

can provide estimates (and full posterior 

probability density) of any function of model 

parameters including functions which depend upon 

knowledge of hidden states. Let 𝜃h be the vector of 

n inferred hidden states C1…,Cn and let 𝜃 = { 

𝜃p, 𝜃h). The proportion of EBOV acquisitions due 

to ward transmission, 𝑓(𝜃), is given by: 

 

𝑓(𝜃) =                  ∑ 𝛽𝐶𝑛
𝑘=1 k(N-Ck)  

              ∑ 𝛽𝐶𝑛
𝑘=1 k (N-Ck) + v (N-Ck) 

We evaluate the expectation, E[ f (𝜃)│𝑌], by drawing samples 𝜃k, k=1,…,m from 𝑝(𝜃⃒Y) and using the 

approximation of [29] E[ f (𝜃)│𝑌] ≈
1

𝑚
∑ 𝑓𝑚

𝑘=1 (𝜃k)   

 

HIDDEN MARKOV MODEL  

We aim to estimate parameters associated with sporadic colonization, v, and the colonization caused by ward 

transmission, β, using the structured HMM illustrated in Figure 4 

 

 

 

 

 

Figure 4 Hidden Markov Model. Here C represents the number of colonized patients in the ward (detected or 

undetected), Y represents the number of patients detected at each time point. The horizontal arrows represent 

the transition from one state to the next, and the vertical arrows represent the relationship between the 

hidden state and the corresponding observation 

Our Hidden Markov Model (HMM) consists of: 

observation, Y, the number of patients detected at 

each time point; underlying hidden states, C, the 

number of colonized patients in the ward; a 

transition model linking each hidden state with its 

adjacent states, represented by the horizontal lines 

in figure 4 and observation model linking the data 

with the hidden sate, represented by the vertical 

lines in Figure 4. There is one hidden state for each 

observation, denoted C1,C2,…Cn 

The full conditional probability of any node 

depends only on neighboring nodes to which it is 

connected directly. The observation component of 

the HMM, denoted by Y, consists of 200 data 

inputs of weekly Ebola prevalence taken over 6 

months and the vector of time points, t – t1,…,tn, 

C1 C2 C3 C4 

Y1 Y2 Y3 Y4 
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corresponding to each observation time. The vector 

C consists of the n=200 hidden states. To construct 

the transition probability matrix for an arbitrary 

time interval, following the theory of [15], we 

developed a transition probability matrix, Γ(tk-tk-1) 

The i jthelement of Γ(tk-tk-1) gives the probability of 

having j colonized patients on the ward at time tk, 

given that there were I colonized patients on the 

ward at time tk-1. Firstly we developed a discrete 

time transition probability matrix, A, for a small 

time interval, h. let A be the matrix in which the i 

jth element is given by 

 

 

Pr(C(t+h) = j/C(t) = i). A is given using the system 

of equations  

Pr[𝐶(𝑡 + ℎ) =  𝑖 + 1 |𝐶(𝑡) =  𝑖]

=  𝛽𝑖(𝑁 − 𝑖)ℎ + 𝑣 (𝑁 − 𝑖)ℎ

+ 𝑜(ℎ),  

Pr[𝐶(𝑡 + ℎ) =  𝑖 − 1 |𝐶(𝑡) =  𝑖] =  𝜇𝑖ℎ + 𝑜(ℎ), 

      

Pr[𝐶(𝑡 + ℎ) =  𝑖 |𝐶(𝑡) =  𝑖] =  1 −  𝛽𝑖(𝑁 −

𝑖)ℎ − 𝑣 (𝑁 − 𝑖)ℎ- 𝜇𝑖ℎ + 𝑜(ℎ), 

Pr[𝐶(𝑡 + ℎ) = 𝑗 (𝑗 ≠ 𝑖 − 1, 𝑖, 𝑖 + 1)|𝐶(𝑡) = 𝑖]

= 𝑜(ℎ). 

Here, i and j are the number of patients colonized 

in the ward and can take on values 0,…,N. 

The mean value for the estimated detection rate 

was 0.75 with a 95% credible interval of 0.59 to 

0.93. 

 MODEL 

FORTHEIMPACTOFINTERVENTION 

FOR HOSPITALIZED AND 

COMMUNITY    SYMPTOMATIC CASES  

We used attack rate as the outcome measures to 

model the effect of a number of interventions: 

Improving hand hygiene compliance, 

decolonization, and health care workers / patients 

ratios with and without patient cohorting, ward size 

and patient discharge rate on the attack rate. We 

examined both deterministic and stochastic model 

predictions. 

Estimated means of the parameters derived from 

the data were used as the default parameters. The 

ward  in the study was not fixed, however the ward 

ran at near maximum capacity much of the time, 

therefore new administrations were often limited 

by the rate of patient discharge. This justified the 

use of a simplifying assumption of fixed ward size 

to estimate the impact of interventions. We used 

the mean occupancy derived from the data to 

determine the number of patients in the ward, np = 

15 (here we used a fixed value of occupancy as a 

parameter, Np, rather than the variable, Np). We 

also assumed that Nh = Pn
p, where 𝜌 is the health – 

care / patient ratio. This simplifies the 

mathematical equations to  

𝑑𝑌

𝑑𝑡
p = cphp(np – Yp)Yh – (𝛾 + 𝜇Y (1 – 𝜎)) Yp + 𝜇x𝜎(np-Yp),        

𝑑𝑌

𝑑𝑡
h=cpph (pnp – Yh) Yp – kYh. 

 

Note that we have now allowed decolonization of 

patients, 𝛾, to be non – zero. The equilibrium attack 

rate is given by AR = cphp Yhe,  Where Yhe is the 

equilibrium value for Yh, obtained when 
𝑑𝑌

𝑑𝑡
p= 

𝑑𝑌

𝑑𝑡
h= 

o. In the stochastic version of the model, the 

probability during a small time interval, 𝛿, of 

transiting from one state to another is described by 

the equations

 

𝑃𝑟 ( Yp(t+𝛿) = i + 1⃒Yp(t) = i) = Cphp(np-i) Yh𝛿 + 𝜇x𝜎(np – i)𝛿 + o (𝛿) 

𝑃𝑟 ( Yp(t+𝛿) = i - 1⃒Yp(t) = i) = (𝛾-𝜇y) (1 – 𝜎)𝑖𝛿 + o (𝛿) 

𝑃𝑟 ( Yp(t+𝛿) = i⃒Yp(t) = i) =1 - Cphp(np-i) Yh𝛿 - 𝜇x𝜎(np – i)𝛿-(𝛾-𝜇y) (1 – 𝜎)𝑖𝛿 + o (𝛿) 

 

 

Where o (𝛿) is the Landau symbol, denoting lower order terms of𝛿. It was a summed that 
𝑑𝑌

𝑑𝑡
h = 0. All other 

probabilities are o (𝛿). 

 

Table 3: showing parameters used in the model for the impacts intervention for hospitalized and 

community symptomatic cases (pt = patients HCW = health care workers) 
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Parameter                                                  Symbols Units 

Contact rate  c Contacts Pt-1HCW-1 

day -1 

Decolonization  rate  𝛾 Pt-1 day -1 

Admission prevalence  𝜎 - 

Admission rate (patients per day) 𝛺 pt day -1 

Discharge rate of colonized patients  𝜇Y day -1 

Discharge rate of uncolonized patients  𝜇x day -1 

Transmission patients → Health care workers  Pph Colonization contact -1 

Transmission health care workers → patients per contact  Php Colonization HCW-1 

Hand hygiene rate per health care workers   k HCW-1 day -1 

 

THEOREM  

(i) if the function f(S,I) monotonically grows with 

respect to S and I and is concave with respect to the 

variable I (that is if  𝜕2𝑓 ≤ 0), and Ro> I, then the 

system (I) has an unique  𝜕𝐼2 

Positive endemic equilibrium state Q* which is 

globally asymptotically stable  

 

(ii)If Ro≤ 1, then there is no positive endemic 

equilibrium state, and the infection – free 

equilibrium state  Qo is globally asymptotically 

stable.  

Proof: Existence of a positive equilibrium state.  

At fixed of the system, the equalities 𝛿𝐼 = 𝜇𝑆 =

 𝜇 𝑎𝑛𝑑 𝛿𝐼 = 𝑓 (𝑆, 𝐼) hold. These equalities define a 

negatively sloped straight line q1 and a curve q2 on 

the I Splane. The equality 𝛿𝐼 = 𝑓(𝑆. 𝐼) defined also 

a function  

S = h (I). If 
𝜕𝑓(𝑠.𝐼)

𝜕𝑆
 is strictly positive, then, by the 

implicit function theorem, the function h (I) is 

defined and continuous for all I > 0. It is obvious 

that is S*= h (0) ≤ So = 1 then there is at least one 

 

 

 

 

 

 

 

 

 

 

Figure 5: The straight line q1 and the curve q2 

Point of intersection of the lines q1 andq2. The function 𝑓(𝑆, 𝐼) grows monotonically with respect of both 

variable, and hence So / S*> 1 if  

Lim   f  (So, I)        lim  =      f  (S0, I)      =    
1

𝛿
𝜕𝑓 (So, 0) = Ro> 1.    

I→0f  (S*, I)      I→0𝛿𝐼     𝜕𝐼 

 

We assumed now that apart from the equilibrium Q*, the system has another positive equilibrium state Q1 = 

(S1,I1). Then f (S1,I1) + 𝜇S1 = 𝜇 and 𝛿𝐼1 = f (S1,I1) hold. The derivative of a Lyapunov function is equal to zero at 

any equilibrium state, and therefore 
𝑑𝑣

𝑑𝑡
 = 0 at Q1. Therefore, S1 and I1 must satisfy the equalities.  

 

1 – S1              1 – f  (S*, I*)                    = 0  (i)   

       S*                        f  (S1, I*) 

 

  1 – f  (S*, I*)               1 – f  (S1, I)      = 0           (ii)   

      f  (S1, I*)                      f  (S*, I) 

 

   

S 

S0 

S* 

q2 

S*, I* 

q1 

  I 
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  I1 – f  (S1, I1) f  (S*, I*)  - 1    = 0                          (iii)   

I*f (S1, I*)         f (S*, I1) 

 
𝜕𝑣

𝜕𝑠
 = 1 – f  (S*, I*)

𝜕𝑣

𝜕𝐼
 =   1 – f  (S*, I*) (iv) 

f  (S, I*)                             f  (S*, I) 

 

 

Where v is a function defined as  

V (S, I)  = S - ∫ 𝑓
𝑠

𝜀
(S*, I*)𝑑𝜏 + 1 –  ∫ 𝑓

𝐼

𝜀
(S*, I*)𝑑𝜏,    

𝑓(𝜏, 𝐼*)                      f(S*, 𝜏) 

 

It is obvious that for a monotonic function (or for a function satisfying condition (iv), the equality (i) holds only 

when S1 = S*. Then I1 = I* is necessary to satisfy fixed point of the system.  

 

Furthermore, it is also obvious that for a monotonic (or satisfying condition (iv) function, the point Q* is the 

only invariant set the system (1) in the set 
𝑑𝑣

𝑑𝑡
 = 0. 

Therefore, by the Lyapunov assumption the point Q* is asymptotically stable for all S ≥ 𝜀. 

The parameter 𝜀 may be made as small as required, and therefore the endemic equilibrium Q* is a 

asymptotically stable in the non –negative quadrant R2
+.  

 

To prove the global stability of the infection – free equilibrium states Q0 = (1,0 ) we consider the Lyampunov 

function. 

 

U (S,I) = S - ∫ 𝑙𝑖𝑚
𝑠

𝜀
f (So, I)d𝜏 + I   

𝐼 →1of(𝜏, 𝐼) 

(We cannot consider the function U = S - ∫
𝑠

𝜀
f (So, Io)d𝜏 + I, because f(S,0) = 0)  

                                                                               f(𝜏, 𝐼o) 

 

In this case of the SIR system (1), the Lyampunov function satisfies  
𝑑𝑈(𝑆,𝐼)

𝑑𝑡
 = 𝜇 – 𝑓(𝑆, 𝐼 −  𝜇𝑆 −  𝜇 𝑙𝑖𝑚 f  (So, Io)     + f(S, I) lim     f  (So, Io)     + 𝜇𝑆 lim f  (So, Io) - 𝛿𝐼 

f  (S, Io)         f  (S, Io)         f  (S, Io)          

 

= 𝜇 – 𝜇S  - 𝜇  lim f  (So, Io)         +     f(S, I) lim     f  (So, Io)    + 𝜇S lim  f  (So, Io) - 𝛿𝐼 

            So               f  (S, Io)          f  (S, Io)         Sof  (S, Io) 

 

= 𝜇   1  -   S       1 -  f  (So, Io)      + 𝛿𝐼  f  (S, I)     lim   f  (So, Io)    - 1  

So f  (S, Io)                         𝛿𝐼 f  (S, Io ) 

 

(Here we denote lim f  (So, Io)= lim 1 → Io  f  (So, I)   For a monotonic function  

                                 f  (S, Io)                        f  (S, I) 

 

    1  -   S       1 – lim  f  (So, Io)≤ 0    for all S>0   

So f  (S, Io)                          

 

Concavity of the function f (S.I) ensures that f(S.I) ≤ 1 𝜕𝑓 (S, 0)  for al 1> 0, and hence    
     𝜕𝐼 

         f (S.  I)       1 – lim           f  (So, I)    =         f (S.  I) 

𝛿𝐼           1→ Iof  (S, I)                   𝛿𝐼 
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∂f (So, Io)  

∂I ≤
1

𝛿
∂f (So, Io) = Ro 

∂f (S, Io)                    ∂I 
∂I         

 

Therefore, Ro≤ 1 ensures that  
𝑑𝑈(𝑆.𝐼)

𝑑𝑡
≤ 0 for all S, I>𝜀, and hence by the asymptotic stability theorem , the 

equilibrium state Qo is globally a asymptotically stable in this case.  

 

We proved that for all Ro≤ 1 there exists a unique 

and globally stable positive equilibrium state Q*, 

and that for Ro≤ 1 the infection – free equilibrium 

Qo is globally stable. At R0 = 1 for any function f(S, 

I) monotonic with respect to S. These two 

equilibriumQo and Q*, meet and exchange their 

stability; that is a transcritical bifurcation occurs at 

this point. Indeed, it is easy to see (cf. Proof, part 1) 

that, for a monotonic function f(S,I), So, At S*(and 

hence S*) tends to So as Ro tends to I, and that Ro = 

1 implies S* = So. At Ro = 1 the point (So, Io) is, 

therefore, the point ofintersection of the lines q1 

and q2 (see Fig.5) For Ro<1 the equilibrium Q* 

moves in the quadrant S > 0, 1 < 0. 

 

Fig: 6  Cumulative totals of cases and deaths over time 
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Fig: 7    Cumulative totals in log scale 

 

Fig: 8   Average new cases and deaths per day (between WHO reporting dates) 
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Fig:9 The reported weekly cases of Ebola in West Africa as listed on Wikipedia Ebola virus epidemic in 

West Africa; some values are interpolated 

 

Fig: 10 Cumulative numbers of cases by country, using a linear scale 
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Fig: 11Cumulative numbers of cases by country, using a logarithmic scale 

 

Fig: 12Cases based on population, using a linear scale 

MODEL ADEQUACY AND SENSITIVITY ANALYSIS  

Due to the degree of uncertainty in the parameter 

values, we consider a range of parameters to 

examine the dependence of Ro on parameter 

variation. The parametric bootstrap analysis was 

used to determine model adequacy, this process 

involves simulating data from the model using 

ward observations (number of uncolonized number 

of patients and admission of known colonized 

patients) and the estimated transmission parameter. 

The methodology described in this paper was then 

applied to the simulated data to estimate the mean 

of the marginal posterior distribution of the 

transmission parameter. The study found that this 

gave an unbiased estimate of the transmission 

parameter. We also used Latin Hypercube sampling 

and Partial Rank Correlation Coefficients (PRCCs) 

to identify which parameters Ro is most sensitive. 

Latin Hypercube sampling is a statistical sampling 
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method that evaluates sensitivity of an outcome 

variable to all input variable. PRCCs measure the 

relative degree of sensitivity to each parameter 

regardless of whether the parameter has a positive 

or negative influence on the outcome variable. This 

demonstrates that Ro is most sensitive to variations 

in 𝜇Y, 𝜇x, Pph, Php, k,𝛽,𝜇, 𝑣 𝑎𝑛𝑑 𝑑 respectively, 

shows that the disease is reliably controlled at early 

detection. 

 

 

RESULTS AND DISCUSSION 

The default value for the health care workers / 

patients ration,𝜌, was unity. The default value for 

the decolonization rate,𝛾, was zero. Other default 

values were admission prevalence, 𝜎 = 0.03, 

discharge rate of colonized patients 𝜇Y = 
1

11
 

corresponding to a length of stay of 11 days, 

discharge rate of uncolonised patients 𝜇x = 
1

5
 

corresponding to a length of stay of 5 days, 

probability of transmission from colonized to 

health care workers per contacts pph= 0.13,hand 

hygiene compliance, h = 0.59. In the simulations, 

for each set of parameters, the ward was assumed 

to start with no colonized patients, the burn – in 

period was 200 days and the predicted attack rate 

was derived from the next 139 simulated days. 

Stochastic results were based on 200 simulations 

for each set of parameters, and the 2.6-96.5 

percentile ranges were determined. By leaving all 

other parameters at their default values and 

modifying h, 𝜇Y, 𝜇x and𝜎, we simulated the effects 

of changes in hand hygiene compliance, discharge 

rate of colonized and uncolonised patients and 

admission prevalence respectively. By changing 𝛾 

from zero to 0.05, we simulated the effect of 

decolonization.Cohorting was simulated by 

reducing the number of “effective contacts”. We 

assumed that cohorting was non – selective. That is 

that health care workers cared for a cohort of 

patients who could be a mix of colonized and 

uncolonised patients. The smaller the group in the 

cohort, the more likely that a given contact is a 

return contact and thus not an “effective contact”. 

When maximum co-horting is taking place, we 

assume that a proportion of contacts equal to the 

health care workers / patients, 𝜌, pose no risk 

(When 𝜌 ≥1 all cohorted contacts pose no risk).  

 

Our model defined c as the number of contacts per 

patient per health care taker. By examining the 

effect of increasing staff patient ratio, 𝜌, we assume 

that each health care worker has fixed number of 

contacts and increasing staff increases contacts. To 

extend this simulation to allow for charges in 

patient numbers but continuing to assume a fixed 

number of contacts per Health care worker, one 

could modify the contact rate, c* = c np, where np is 

the default number of patients  

                                                                                

Np 

  

and Np is the actual number of patients. We could 

alternatively simulate a situation where patients 

have a fixed number of contacts and increasing 

staff does not increase contacts.  

Such a simulation would require modifying the 

contact rate to c* c/𝜌. This model predicts that the 

attack rate will increase dramatically should the 

hand hygiene compliance fall below 40%. A hand 

hygiene compliance of 48% would increase the 

ward of production ratio to unity and changing the 

discharge rate of colonized patients 𝜇Y, leading to a 

reciprocal change in expected duration of stay. The 

response curve was sigmoidal in shape. Increasing 

the mean time on ward following colonization to 

21 days would lead to the ward of reproduction 

ratio exceeding unity.  

 

The response of attack rates to doubling the 

admission prevalence from the current 3% to 6% is 

predicted increase in attack rate from one 

transmission per 160 uncolonised patients’ days to 

one per 105 uncolonised patient’s day. We 

investigated the predicted impact of changing the 

health care worker / patient ratio increasing health 

care worker number increases cross transmission. 

The study included 1698 patients of these 120 

patients were known to be colonized on admission. 

Given the following parameters number of patient 

N = 75, removal rate of colonized patients 𝜇
1

21
days, 

contact / transmission rate 𝛽 = 1.0 x 10-3, Sporadic 

acquisition rate v = 2.0 x 10-4, detention probability 

d = 0.58 – 0.97 where N, 𝜇 are directly from the 

data set, 𝛽and v are fitted using HMM, and d is 

from literature review.The estimated value for the 

transmission coefficient 𝛽 was 10 x 10-4 (CI957.9 x 

10-4, 13x10-4) and the sporadic acquisition rate v 

was 2.0 x 10-4 (CI95 0.85 x 10-4, 3.8 x 10-4). The 

coefficient of correlation between 𝛽 𝑎𝑛𝑑 𝑣 was 

estimated to be -0.23.The basic reproduction ratio, 



Islamic University Journal     Vol 5, No.1Jun, 2015 26 

 

 
www.iuiu.ac.ug 

Ro, is “the average number of persons directly 

infected by an infectious case during its entire 

infectious period, after entering a totally 

susceptible population” [18]. In this model it can be 

shown to be Ro =
𝛽𝑁

𝜇
. The basic reproduction ratio is 

estimated to be 1.57(CI95 0.82-1.95). 

In our model people are either susceptible infected 

or recovered. Recovered individuals return only 

temporary immunity before becoming susceptible 

again. Ebola virus, (Ebov) grows logistically with a 

given carrying capacity. The transmission of Ebola 

virus during single contact in the hospital setting. 

Hospital infection surveillance data is often less 

detailed than data collected for epidemiological 

studies. This study uses modified epidemical 

models (SEIR) to analyze data from Ebola outbreak 

that are specific to virus. We proposed and 

investigated an impulsive statistical model in an 

attempt to understand the effects of some intrinsic 

variables controlling Ebola. The disease – free 

equilibrium is shown to be globally stable 

considering Lyapunov function, proved that for all 

Ro> 1 there exist a unique and global stable 

positive equilibrium state Q*, and there for Ro< 1 

the infection – free equilibrium Q0 is globally 

stable. At Ro=1 for any function f(S, I) monotonic 

with respect to S these two equilibrium, Qoand Q*, 

meet and exchange their stability, that is a 

transcritical bifurcation occurs at this point. The 

comparison theorem is used to prove the global 

stability for DFE. The theory is employed to show 

that if a unique positive endemic equilibrium states 

Q*, exists then it’s globally asymptotically stable 

when the Ro> 1 and if Ro< 1 then there is no 

positive endemic equilibrium states,  and the DFE 

state Q0 is globally a asymptotically stable. Due to 

the degree of uncertainty in the parameter values, 

we considered a range of parameters to examine 

the dependence of R0 on parameter variation. 

 We perform sensitivity analysis which ensures the 

uniqueness and the global stability of the positive 

endemic equilibrium state which demonstrates that 

Ro is most sensitive to variation in 𝜇Y, 𝜇x, Pph, Php, 

k,𝛽,𝜇, 𝑣 𝑎𝑛𝑑 𝑑 respectively. This shows that the 

disease is reliably controlled at early detection. The 

basic reproduction ration 0.82 <R0< 1.95 at 95% 

credible interval and the mean value for the 

estimated detection rate was 0.75 with a 95% 

credible interval of   0.59 – 0.93. Important 

conclusion regarding the infectivity of Ebola virus 

can be drawn from this analysis. The estimated 

daily infectivity of the hospitalized patients was 

lower than community patients. Despite this, it was 

estimated that early in the epidemic, a larger 

number of secondary cases resulted from 

hospitalized patients. These results support, the 

conclusion that interventions were effective at 

controlling the Ebola epidemic in West Africa. The 

Bayesian approach was adopted in this study 

because the main questions posed by the studies 

were “how does the information, provided in this 

single dataset, modify our belief regarding the 

transmission of the virus?” Such a question does 

not have meaning in a frequentist   context. MSF 

closed its treatment centers in May leaving only a 

small skeleton staff to handle the Macenta region. 

However, high numbers of new cases reappeared in 

the region in late August. According to Marc 

Poncin, a coordinator for MSF, the new cases were 

related to persons returning to Guinea from 

neighboring Liberia or Sierra Leone.[21].By our 

analysis there is an impact of public health control 

interventions in hospital. 

CONCLUSSION/RECOMMENDATION 

We have explored the sensitivity of the epidemic 

size to the starting time of interventions. The 

exponential increase of the final epidemic size with 

the time of start of interventions as seen on the 

figures above supports the idea that the rapid 

implementation of control measures should be 

considered as a critical component in any 

contingency plan against disease outbreaks 

especially for Ebola case which have no specific 

treatment or vaccine exists. Our model has some 

limitations, which should be noted one limitation is 

the estimation of the parameters, a number of 

which were assumed. Our model also ignored some 

important factors like nutrition among poor 

communities. For example, the disease is more 

fatal for poor people with inadequate nursing and 

running water with sanitizer for hand washing. We 

also conflated the effect of household sensitizing 

and cleaning into the saturation constants. In 

summary despite the lack of detailed data set 

transmission characteristics was inferred using 

Hidden Markov models (HMMs a symptomatic 

case which are specific to the virus.We thus 

recommend the development of such models to 

determine infectivity with health interventions for 

early detection, The Markov Chain Monte – Carlo 
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algorithm is a very convenient tool for numerical 

integration of complex expressions derived from 

incorporation of latent variables into transmission 

models. Bayesian inference also allowed us to 

incorporate prior information into models. In this 

study the prior probabilities were vague. Mostly, 

this was because little was known about the model 

parameters. In the cases where a small amount of 

independent data was available, these were used to 

independently validate our   model to conclusion. 

The results of our model assumption revealed that 

the basic reproduction number will surely be a 

function of the contribution of the interaction of the 

human effective population. Our findings are very 

significant contribution to the disease transmission 

dynamics of non-linear form and serve as an 

improvement of the models earlier reviewed as 

literature. Our estimate of Ro=1.57( 0.82 < Ro< 

1.95) at 95% confidence interval, means Ro> 1 

which is in conformity to standard principle in 

epidemiology and this ensures the uniqueness and 

the global stability of the positive endemic 

equilibrium state. We shall shift focus to the 

analysis of the endemic equilibrium of our model 

in the subsequent papers.
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